

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 177 (2004) 760–764

JOURNAL OF SOLID STATE CHEMISTRY

http://elsevier.com/locate/jssc

Preparation and structure of the light rare-earth copper selenides $LnCuSe₂$ ($Ln = La$, Ce, Pr, Nd, Sm)

Ismail Ijjaali, Kwasi Mitchell, and James A. Ibers

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA Received 3 June 2003; received in revised form 11 August 2003; accepted 7 September 2003

Abstract

The ternary selenides $LnCuSe_2 (Ln=La, Ce, Pr, Nd, Sm)$ have been synthesized by the reaction at 1173 K of Ln, Cu, and Se in a KBr or KI flux. The compounds, which are isostructural with LaCuS₂, crystallize with four formula units in the space group P_1/c of the monoclinic system. The structure may be thought of as consisting of layers of CuSe₄ tetrahedra separated by double layers of LnSe₇ monocapped trigonal prisms along the *a*-axis. Cell constants (A or deg) at 153 K are: LaCuSe₂, 6.8142(5), 7.5817(6), 7.2052(6), 97.573(1)°; CeCuSe₂, 6.7630(5), 7.5311(6), 7.1650(6), 97.392(1)°; PrCuSe₂, 6.740(1), 7.481(1), 7.141(1), 97.374(2)°; NdCuSe₂, 6.7149(6), 7.4452(7), 7.1192(6), 97.310(1)°; SmCuSe₂, 6.6655(6), 7.3825(7), 7.0724(6), 97.115(1)°. There are no Se-Se bonds in the structure of $LnCuSe_2$; the formal oxidation states of $Ln/Cu/Se$ are $3+/1+/2-$. O 2003 Elsevier Inc. All rights reserved.

Keywords: Synthesis; Crystal structure; Solid-state compound; Rare-earth copper selenide

1. Introduction

The ternary rare-earth copper chalcogenides $LnCuQ₂$ $(Ln=$ rare-earth element, Sc, Y; $Q=S$, Se, Te) show structural diversity and interesting optical, magnetic, and thermoelectric properties [\[1–6\].](#page-3-0) Nevertheless, only a few such compounds have been characterized by means of single-crystal diffraction techniques. The light rareearth copper sulfides $LnCuS_2$ ($Ln = La$, Sm) crystallize in space group $P2_1/c$ of the monoclinic system [\[7,8\]](#page-3-0), whereas $YCuS₂$ crystallizes in space group *Pnma* of the orthorhombic system [\[9\]](#page-3-0). Recently, the structures of the mixed-chalcogen phases LaCuSTe and SmCuSTe were reported [\[10\].](#page-3-0) LaCuSTe is closely related to $LaCuS₂$ and adopts the same space group, whereas SmCuSTe crystallizes a new structure type in space group Pbca of the orthorhombic system. The structures of the sulfides and mixed-chalcogenides comprise layers of Cu Q_4 tetrahedra separated by Ln atoms. In contrast, the non-stoichiometric compounds $LaCu_{0.28}Te₂$ [\[11\]](#page-3-0) and $LnCu_xTe₂$ ($Ln=La$, Nd, Sm, Gd, and Dy) [\[6\]](#page-3-0) are isostructural and crystallize in space group *Pbcm* of the orthorhombic system. These materials adopt a three-

dimensional structure that contains infinite linear Te–Te chains.

Insofar as we know, no single-crystal data have been reported for the corresponding selenides, $LnCuSe₂$. Typically, the methods for crystal growth employed in the syntheses of these materials have led to poor quality or twinned crystals [\[12,13\]](#page-3-0). We have successfully synthesized single crystals of the light rare-earth copper selenides, namely LaCuSe₂, CeCuSe₂, PrCuSe₂, $NdCuSe₂$, and $SmCuSe₂$, from high-temperature reactions of the constituent elements and the use of a KBr or KI flux. Here, we report these syntheses and the structural characterization of these five compounds.

2. Experimental

2.1. Synthesis

The compounds $LnCuSe₂$ ($Ln=La$, Ce, Pr, Nd, Sm) were prepared by the reactions of the rare-earth elements La (Alfa, 99.9%), Nd (Alfa, 99.9%), Ce (Alfa, 99.9%), Pr (Strem, 99.9%), or Sm (Alfa, 99.9%) with Cu (Aldrich, 99.999%) and Se (Aldrich, 99.5%). The synthesis was performed in two steps. First, mixtures

^{*}Corresponding author. Fax: $+1-847-491-2976$.

E-mail address: ibers@chem.northwestern.edu (J.A. Ibers).

 $0022-4596$ /\$ - see front matter \odot 2003 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2003.09.007

of 1.0 mmol of Ln , 1.0 mmol of Cu, and 2.0 mmol of Se were loaded into carbon-coated fused-silica tubes under an argon atmosphere in a glove box. These tubes were sealed under a 10^{-4} Torr atmosphere and then placed in a computer-controlled furnace. The samples were heated to 1023 K in 3 days, kept at this temperature for 3 days, and then cooled to 295 K. In the second step, the resultant mixtures were ground thoroughly and 300– 400 mg of KBr was added. Next, the samples were heated to 1173 K in 72 h, kept at 1173 K for 4 days, slowly cooled at 0.03° C/min to 953 K, and then cooled to 295 K. The products from each these steps were contaminated with unidentified Ln/Se and Cu/Se binaries. The final reaction mixtures also contained powdered $LnCuSe₂$. These reaction mixtures were washed free of halide salts and then dried with acetone. For all reactions dark red block-like crystals were obtained in yields of about $\sim 10\%$. Selected single crystals were examined with an EDX-equipped Hitachi S-3500 SEM and found to have the stated composition within the accuracy of the method $(+5%)$. These compounds are stable in air for several days. They can also be synthesized with the use of a KI flux.

We used the same procedures in attempted syntheses of $LnCuSe₂$ for the heavier rare-earth elements, specifically for $Ln = Gd$, Tb, Dy, Ho, Er, Tm, and Yb. Only for $Ln = Gd$ were any crystals obtained, and these were of very poor quality.

2.2. Crystallography

Single-crystal X-ray diffraction data were obtained with the use of graphite-monochromatized $M \circ K \alpha$ radiation ($\lambda = 0.71073 \text{ Å}$) at 153 K on a Bruker Smart-1000 CCD diffractometer [\[14\]](#page-4-0). The crystal-to-detector distance was 5.023 cm. Crystal decay was monitored by

Table 1

^aFor all structures $Z = 4$, $T = 153(2)$ K, and $\lambda = 0.71073$ Å.

 ${}^{b}R(F) = \sum_{\alpha} |F_{\alpha}| - |F_{\alpha}| / \sum_{\alpha} |F_{\alpha}|.$

 $R_w(F_o^2) = \left[\sum w(F_o^2 - F_c^2)^2 / \sum wF_o^4\right]^{1/2}$, $w^{-1} = \sigma^2(F_o^2) + (qF_o^2)^2$ for $F_o^2 \ge 0$; $w^{-1} = \sigma^2(F_o^2)$ for $F_o^2 \le 0$. $q = 0.015$ for La, 0.023 for Ce, 0.045 for Pr, 0.029 for Nd, 0.023 for Sm.

recollecting 50 initial frames at the end of data collection. Data were collected by a scan of 0.3° in ω in three sets of 606 frames at settings of 0° , 120 $^\circ$, and 240° for PrCuSe₂, NdCuSe₂, and SmCuSe₂ and in four sets of 606 frames at settings of 0° , 90° , 180° , and 270°

Table 2

Atomic coordinates and equivalent isotropic displacement parameters for LaCuSe₂, CeCuSe₂, PrCuSe₂, NdCuSe₂, and SmCuSe₂

Atom	\mathcal{X}	\mathcal{V}	\overline{z}	U_{eq} $(\AA^2)^a$
LaCuSe ₂				
La	0.30828(5)	0.04995(5)	0.19935(5)	0.0054(2)
Cu	0.0720(1)	0.6621(1)	0.0522(1)	0.0102(2)
Se(1)	0.09587(9)	0.38951(8)	0.27735(8)	0.0059(2)
Se(2)	0.58664(9)	0.27418(8)	0.00057(8)	0.0057(2)
CeCuSe ₂				
Ce	0.30802(5)	0.04914(4)	0.19930(4)	0.0067(2)
Cu	0.0717(1)	0.6618(1)	0.0515(1)	0.0113(2)
Se(1)	0.09708(8)	0.38993(8)	0.27863(8)	0.0069(2)
Se(2)	0.58427(8)	0.27451(8)	0.00010(8)	0.0067(2)
PrCuSe ₂				
Pr	0.30732(7)	0.04872(7)	0.19902(7)	0.0052(3)
Cu	0.0733(2)	0.6615(2)	0.0512(2)	0.0094(3)
Se(1)	0.0969(1)	0.3898(1)	0.2794(1)	0.0056(3)
Se(2)	0.5819(1)	0.2743(1)	$-0.0004(1)$	0.0053(3)
NdCuSe ₂				
Nd	0.30675(5)	0.04791(5)	0.19867(5)	0.0049(2)
Cu	0.0740(1)	0.6609(1)	0.0508(1)	0.0091(2)
Se(1)	0.0974(1)	0.38968(9)	0.28011(9)	0.0051(2)
Se(2)	0.5803(1)	0.27443(9)	$-0.00029(9)$	0.0047(2)
SmCuSe ₂				
Sm	0.30583(5)	0.04681(5)	0.19861(5)	0.0065(2)
Cu	0.0755(1)	0.6604(1)	0.0504(1)	0.0102(2)
Se(1)	0.0984(1)	0.38962(9)	0.2814(1)	0.0066(2)
Se(2)	0.5768(1)	0.27476(9)	$-0.0008(1)$	0.0065(2)

^aU_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Fig. 2. $LnSe₇$ layer viewed down the *a*-axis.

Fig. 1. Unit cell of $LnCuSe₂$ viewed down the b-axis. For clarity, the Ln–Se bonds are not shown.

for $LaCuSe₂$ and $CeCuSe₂$. The exposure times were $15 \text{ s/frame for LaCuSe}_2$, $CeCuSe_2$, and $PrCuSe_2$, and $10 \text{ s}/\text{frame}$ for NdCuSe₂ and SmCuSe₂. The collection of intensity data on the Bruker diffractometer was carried out with the program SMART [\[14\]](#page-4-0). Cell refinement and data reduction were carried out with the use of the program SAINT [\[14\]](#page-4-0) and face-indexed absorption corrections were carried out numerically with the

program XPREP [\[15\]](#page-4-0). Then the program SADABS [\[14\]](#page-4-0) was employed to make incident beam and decay corrections.

The structures were solved with the direct methods program SHELXS and refined with the full-matrix leastsquares program SHELXL of the SHELXTL suite of programs [\[15\].](#page-4-0) The final refinements included anisotropic displacement parameters and secondary extinction corrections. These displacement parameters do not suggest the presence of non-stoichiometry. Indeed, for all of these structures the site occupancy for the Cu atom when refined did not differ significantly from unity. A summary of the selected crystallographic data is listed in [Table 1](#page-1-0). The program STRUCTURE TIDY [\[16\]](#page-4-0) was used to standardize the positional parameters; these

Fig. 3. CuSe₄ mixed octagonal/quadrilateral nets viewed along the a - and b -axis, respectively.

are given in [Table 2.](#page-1-0) [Table 3](#page-2-0) presents selected bond distances and angles.

3. Results and discussion

The structure of the isostructural $LnCuSe₂$ ($Ln = La$, Ce, Pr, Nd, Sm) compounds, which is of the $LaCuS₂$ structure type [7], is illustrated in [Fig. 1](#page-2-0); for clarity, the $Ln-Se$ bonds are not shown. Each Ln atom is surrounded by seven Se atoms $(3Se(1) + 4Se(2))$ to form a monocapped trigonal prism. These prisms share edges and caps to form double layers that stack perpendicular to the a-axis [\(Fig. 2\)](#page-2-0). These double layers are separated by layers of Cu atoms, each Cu atom being tetrahedrally coordinated by four Se atoms $(3Se(1) + 1Se(2))$. Alternatively, the structure may be thought of as consisting of CuSe₂ sheets separated by Ln atoms along the a-axis. A more detailed illustration of the $CuSe₂$ sheets is depicted in Fig. 3. The sheets are composed of edge-sharing dimers of $CuSe_4$ tetrahedra (Cu_2Se_6). Each dimer shares corners with neighboring dimers to form mixed octagonal/quadrilateral nets that stack along the a -axis to form channels in which the Ln atoms reside.

The Ln –Se distances, which range from 2.9115(8) to 3.2235(7) \AA , are reasonable and decrease from La to Sm, as expected from the lanthanide contraction ([Table 3\)](#page-2-0). These Ln –Se bond lengths are consistent with those in other materials that contain seven-coordinate Ln atoms, for example with those of $3.023(2)$ – $3.210(2)$ Å for La–Se in KLaGeSe₄ [\[17\],](#page-4-0) 2.900(1)–3.216(1) Å for Ce–Se in $Ce_{3.67}Ti_2O_3Se_6$ [\[18\],](#page-4-0) 2.911(2)–3.079(2) Å for Pr–Se in Pr₃InSe₆ [\[19\],](#page-4-0) 2.864(1)–3.209(1) Å for Nd–Se in $Nd_{3.67}Ti_2O_3Se_6$ [\[18\]](#page-4-0), and 2.911(1)–2.969(1) Å for Sm– Se in $Sm₂Se₃$ [\[20\]](#page-4-0). The Cu–Se bond lengths are also reasonable and vary from $2.434(1)$ to $2.619(1)$ Å in LnCuSe₂ compared with 2.478(2)–2.577(2) A for Cu–Se in β -BaLaCuSe₃ [\[21\]](#page-4-0). The smallest contact distance between Se anions is beyond the bonding range.

Therefore, the formal oxidation states of Ln/Cu/Se are $3+1+2-$. These charge-balanced materials are expected to be semiconductors, as was predicted for $LaCuS₂$ and $LaCuSTe$ [10].

Acknowledgments

This research was supported by the US National Science Foundation under Grant DMR00-96676 (J.A.I.) and a Ford Predoctoral Fellowship to K.M. Use was made of the MRL Central Facilities supported by the National Science Foundation at the Materials Research Center of Northwestern University under Grant DMR00-76097.

References

- [1] J.P. Dismukes, R.T. Smith, J.G. White, J. Phys. Chem. Solids 32 (1971) 913–922.
- [2] T. Murugesan, J. Gopalakrishnan, Indian J. Chem. Sect. A 22 (1983) 469–474.
- [3] M.-P. Pardo, M.-F. Gardette, J. Flahaut, J. Solid State Chem. 90 (1991) 1–7.
- [4] Y. Wang, N. Sato, T. Fujino, Mater. Res. Bull. 36 (2001) 1029–1038.
- [5] R. Patschke, P. Brazis, C.R. Kannewurf, M.G. Kanatzidis, J. Mater. Chem. 9 (1999) 2293–2296.
- [6] F.Q. Huang, P. Brazis, C.R. Kannewurf, J.A. Ibers, J. Am. Chem. Soc. 122 (2000) 80–86.
- [7] M. Julien-Pouzol, S. Jaulmes, A. Mazurier, M. Guittard, Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 37 (1981) 1901–1903.
- [8] G.G. Guseinov, A.S. Amirov, I.R. Amiraslanov, K.S. Mamedov, Dokl. Akad. Nauk Az. SSR 40 (1984) 62–64.
- [9] P. Lauxmann, T. Schleid, Z. Anorg. Allg. Chem. 626 (2000) 1608–1612.
- [10] F.Q. Huang, J.A. Ibers, Inorg. Chem. 38 (1999) 5978–5983.
- [11] N.-H. Dung, M.-P. Pardo, P. Boy, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 39 (1983) 668–670.
- [12] M. Julien-Pouzol, M. Guittard, C. Adolphe, C. R. Acad. Sci. 267 (1968) 823–826.
- [13] M. Julien-Pouzol, M. Guittard, Ann. Chim. (Paris) 7 (1972) 253–262.
- [14] Bruker, SMART Version 5.054 Data Collection and SAINT-Plus Version 6.22 Data Processing Software for the SMART System, Bruker Analytical X-ray Instruments, Inc., Madison, WI, USA, 2000.
- [15] G.M. Sheldrick, SHELXTL DOS/Windows/NT Version 6.12, Bruker Analytical X-ray Instruments, Inc., Madison, WI, USA, 2000.
- [16] L.M. Gelato, E. Parthé, J. Appl. Crystallogr. 20 (1987) 139-143.
- [17] P. Wu, J.A. Ibers, J. Solid State Chem. 107 (1993) 347–355.
- [18] O. Tougait, J.A. Ibers, Chem. Mater. 12 (2000) 2653-2658.
- [19] L.E. Aleandri, J.A. Ibers, J. Solid State Chem. 79 (1989) 107–111.
- [20] T. Grundmeier, W. Urland, Z. Anorg. Allg. Chem. 621 (1995) 1977–1979.
- [21] A.E. Christuk, P. Wu, J.A. Ibers, J. Solid State Chem. 110 (1994) 330–336.